Dynamic evidential clustering algorithm
نویسندگان
چکیده
In this paper, a dynamic evidential clustering algorithm (DEC) is introduced to address the computational burden of existing methods. To derive such solution, an FCM-like objective function first employed and minimized obtain support levels real singletons (specific) clusters which query objects belong, then initially adaptively assigned outlier, precise or imprecise one via new rule-based on conflicts between different levels. For each object, it finally reassigned singleton related meta-cluster by partial credal redistribution with corresponding edited framework reduce burden. The proposed method can complexity level similar that fuzzy possibilistic clustering, effectively extend application especially in big data. effectiveness DEC tested four experiments artificial datasets.
منابع مشابه
Evidential Clustering: A Review
In evidential clustering, uncertainty about the assignment of objects to clusters is represented by Dempster-Shafer mass functions. The resulting clustering structure, called a credal partition, is shown to be more general than hard, fuzzy, possibilistic and rough partitions, which are recovered as special cases. Three algorithms to generate a credal partition are reviewed. Each of these algori...
متن کاملTS-Models from Evidential Clustering
We study how to derive a fuzzy rule-based classification model using the theoretical framework of belief functions. For this purpose we use the recently proposed Evidential c-means (ECM) to derive Takagi-Sugeno (TS) models solely from data. ECM allocates, for each object, a mass of belief to any subsets of possible clusters, which allows to gain a deeper insight in the data while being robust w...
متن کاملDynamic Hierarchical Compact Clustering Algorithm
In this paper we introduce a general framework for hierarchical clustering that deals with both static and dynamic data sets. From this framework, different hierarchical agglomerative algorithms can be obtained, by specifying an inter-cluster similarity measure, a subgraph of the β-similarity graph, and a cover algorithm. A new clustering algorithm called Hierarchical Compact Algorithm and its ...
متن کاملEvidential clustering of large dissimilarity data
In evidential clustering, the membership of objects to clusters is considered to be uncertain and is represented by Dempster-Shafer mass functions, forming a credal partition. The EVCLUS algorithm constructs a credal partition in such a way that larger dissimilarities between objects correspond to higher degrees of conflict between the associated mass functions. In this paper, we present severa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Knowledge Based Systems
سال: 2021
ISSN: ['1872-7409', '0950-7051']
DOI: https://doi.org/10.1016/j.knosys.2020.106643